
9
A N T I - A N A LY S I S

In the previous chapters, we leveraged both
static and dynamic analysis methods to

uncover malware’s persistence mechanisms,
core capabilities, and most closely held secrets.

Of course, malware authors are not happy about their
creations being laid bare for the world to see. Thus,
they often seek to complicate analysis by writing anti-
analysis logic or other protection schemes. In order to
successfully analyze such malware, we must !rst iden-
tify these protections and then circumvent them.

In this chapter we’ll discuss anti-analysis approaches common among
macOS malware authors. Generally speaking, there are two kinds of anti-
analysis measures: those that aim to thwart static analysis and those that
seek to thwart dynamic analysis. Let’s take a look at both.

188 Chapter 9

Anti-Static-Analysis Approaches
Malware authors use several common approaches to complicate static analy-
sis efforts:

• String-based obfuscation/encryption: During analysis, malware analysts
are often trying to answer questions such as “How does the malware
persist?” or “What is the address of its command and control server?”
Malware that contains plaintext strings related to its persistence, like
!lepaths or the URL of its command and control server, makes analysis
almost too easy. As such, malware authors often obfuscate or encrypt
these sensitive strings.

• Code obfuscation: In order to complicate the static analysis of their code
(and sometimes dynamic analysis as well), malware authors can obfuscate
the code itself. Various obfuscator tools are available for nonbinary mal-
ware specimens like scripts. For Mach-O binaries, malware authors can
use executable packers or encryptors to protect the binary’s code.

Let’s look at a few examples of anti-static-analysis methods and then
discuss how to bypass them. As you’ll see, it’s often easier to overcome
anti-static-analysis approaches with dynamic analysis techniques. In some
cases, the opposite holds as well; static analysis techniques can reveal anti-
dynamic-analysis tactics.

Sensitive Strings Disguised as Constants
One of the most basic string-based obfuscations involves splitting sensitive
strings into chunks so that they are inlined directly into assembly instruc-
tions as constants. Depending on the chunk size, the strings command may
miss these strings, while a disassembler, by default, will rather unhelpfully
display the chunks as hexadecimal numbers. We !nd an example of this
string obfuscation in Dacls (Listing 9-1):

main:
...
0x000000010000b5fa movabs rcx, 0x7473696c702e74
0x000000010000b604 mov qword [rbp+rax+var_209], rcx
0x000000010000b60c movabs rcx, 0x746e6567612e706f
0x000000010000b616 mov qword [rbp+rax+var_210], rcx
0x000000010000b61e movabs rcx, 0x6f6c2d7865612e6d
0x000000010000b628 mov qword [rbp+rax+var_218], rcx
0x000000010000b630 movabs rcx, 0x6f632f73746e6567
0x000000010000b63a mov qword [rbp+rax+var_220], rcx
0x000000010000b642 movabs rcx, 0x4168636e75614c2f
0x000000010000b64c mov qword [rbp+rax+var_228], rcx
0x000000010000b654 movabs rcx, 0x7972617262694c2f
0x000000010000b65e mov qword [rbp+rax+var_230], rcx

Listing 9-1: Basic string obfuscation (Dacls)

As you can see, six 64-bit values are moved !rst into the RCX regis-
ter, then into adjacent stack-based variables. The astute reader will notice
that each byte of these values falls within the range of printable ASCII

Anti-Analysis 189

characters. We can overcome this basic obfuscation using a disassembler.
Simply instruct the disassembler to decode the constants as characters
instead of the default, hexadecimal. In the Hopper disassembler, you can
simply CTRL-click the constant and select Characters to use the SHIFT-R
keyboard shortcut (Listing 9-2):

main:
...
0x000000010000b5fa movabs rcx, 't.plist'
0x000000010000b604 mov qword [rbp+rax+var_209], rcx
0x000000010000b60c movabs rcx, 'op.agent'
0x000000010000b616 mov qword [rbp+rax+var_210], rcx
0x000000010000b61e movabs rcx, 'm.aex-lo'
0x000000010000b628 mov qword [rbp+rax+var_218], rcx
0x000000010000b630 movabs rcx, 'gents/co'
0x000000010000b63a mov qword [rbp+rax+var_220], rcx
0x000000010000b642 movabs rcx, '/LaunchA'
0x000000010000b64c mov qword [rbp+rax+var_228], rcx
0x000000010000b654 movabs rcx, '/Library'
0x000000010000b65e mov qword [rbp+rax+var_230], rcx

Listing 9-2: Deobfuscated strings (Dacls)

If we reconstitute the split string (noting the slight overlap of the !rst two
string components), this deobfuscated disassembly now reveals the path of the
malware’s persistent launch item: /Library/LaunchAgents/com.aex-loop.agent.plist.

Encrypted Strings
In previous chapters, we looked at several more complex examples of string-
based obfuscations. For example, in Chapter 7 we noted that WindTail
contains various embedded base64-encoded and AES-encrypted strings,
including the address of its command and control server. The encryption
key needed to decrypt the string is hardcoded within the malware, meaning
it would be possible to manually decode and decrypt the server’s address.
However, this would involve some legwork, such as !nding (or scripting up)
an AES decryptor. Moreover, if the malware used a custom (or nonstan-
dard) algorithm to encrypt the strings, even more work would be involved.
Of course, at some point the malware will have to decode and decrypt the
protected strings so that it can use them, such as to connect to a command
and control server for tasking. As such, it’s often far more ef!cient to simply
allow the malware to run, which should trigger the decryption of its strings.
If you’re monitoring the execution of the malware, the decrypted strings
can be easily recovered.

In Chapter 7, I showed one technique for doing this: using a network
monitor, which allowed us to passively recover the (previously encrypted)
address of the malware’s command and control server as the malware bea-
coned out for tasking. We can accomplish the same thing using a debugger, as
you’ll see here. First, we locate WindTail’s decryption logic, a method named
yoop:. (In a subsequent section, I’ll describe how to locate such methods.)
Looking at cross-references to this method, we can see it’s invoked any time
the malware needs to decrypt one of its strings prior to use. For example,

190 Chapter 9

Listing 9-3 shows a snippet of disassembly that invokes the yoop: method 1 to
decrypt the malware’s primary command and control server.

0x0000000100001fe5 mov r13, qword [objc_msgSend]
...
0x0000000100002034 mov rsi, @selector(yoop:)
0x000000010000203b lea rdx, @"F5Ur0CCFMOfWHjecxEqGLy...OLs="
0x0000000100002042 mov rdi, self
1 0x0000000100002045 call r13

2 0x0000000100002048 mov rcx, rax

Listing 9-3: Decryption of a command and control server (WindTail)

We can set a debugger breakpoint at 0x100002048, which is the address
of the instruction immediately after the call to yoop: 2. Because the yoop:
method returns a plaintext string, we can print this string when we hit
this breakpoint. (Recall that a method’s return value can be found in
the RAX register.) This reveals the malware’s primary command and control
server, !ux2key.com, as shown in Listing 9-4:

% lldb Final_Presentation.app

(lldb) target create "Final_Presentation.app"
Current executable set to 'Final_Presentation.app' (x86_64).

(lldb) b 0x100002048
(lldb) run

Process 826 stopped
* thread #5, stop reason = breakpoint 1.1

(lldb) po $rax
http://flux2key.com/liaROelcOeVvfjN/fsfSQNrIyxeRvXH.php?very=%@&xnvk=%@

Listing 9-4: A decrypted command and control address (WindTail)

It’s worth noting that you could also set a breakpoint on the return
instruction (retn) within the decryption function. When the breakpoint is hit,
you’ll once again !nd the decrypted string in the RAX register. A bene!t of this
approach is that you only have to set a single breakpoint, instead of several at
the locations from which the decryption method is invoked. This means that
any time the malware decrypts, not just its command and control server but
any string, you’ll be able to recover the plaintext of that as well. However, it
would become rather tedious to manually manage this breakpoint, as it will be
invoked many times to decrypt each of the malware’s strings. A more ef!cient
approach would be to add additional debugger commands (via breakpoint
command add) to the breakpoint. Then, once the breakpoint is hit, your break-
point commands will be automatically executed and could just print out the
register holding the decrypted string and then allow the process to automati-
cally continue. If you’re interested in the caller, perhaps to locate where a spe-
ci!c decrypted string is used, consider printing out the stack backtrace as well.

Anti-Analysis 191

Note that this breakpoint-based approach can be applied to most string
obfuscation or encryption methods, as it is agnostic to the algorithm used.
That is to say, it generally does not matter what technique the malware is
using to protect strings or data. If you’re able to locate the deobfuscation
or decryption routine during static analysis, all you’ll need in order to read
the string is a well-placed debugger breakpoint.

Locating Obfuscated Strings
Of course, this begs the question: How can you determine that malware has
obfuscated sensitive strings and data? And how can you locate the routines
within the malware responsible for returning their plaintext values?

While there are no foolproof methods for the latter, it’s generally straight-
forward to ascertain if a malicious specimen has something to hide. Take, for
example, the output of the strings command, which usually produces a signi!-
cant number of extracted strings. If its output is rather limited or contains a
large number of nonsensical strings (especially of signi!cant length), this is a
good indication that some type of string obfuscation is in play. For example, if
we run strings on WindTail, we’ll !nd various plaintext strings alongside what
appear to be obfuscated strings (Listing 9-5):

% strings - Final_Presentation.app/Contents/MacOS/usrnode

/bin/sh
open -a
Song.dat
KEY_PATH
oX0s4Qj3GiAzAnOmzGqjOA==
ie8DGq3HZ82UqV9N4cpuVw==
F5Ur0CCFMO/fWHjecxEqGLy/xq5gE98ZviUSLrtFPmHE6gRZGU7ZmXiW+/gzAouX
aagHdDG+YP9BEmHLCg9PVXOuIlMB12oTVPlb8CHvda6TWtptKmqJVvI4o63iQ36Shy9Y9hPtlh+kcrCL0uj+tQ==

Listing 9-5: Obfuscated strings (WindTail)

Of course, this method is not foolproof. For example, if the obfuscation
method, such as an encryption algorithm, produces non-ASCII characters,
the obfuscated content may not show up in the strings output.

However, poking around in a disassembler may reveal many or large
chunks of obfuscated or high entropy data that are cross-referenced else-
where in the binary code. For example, malware called NetWire (which
installs a malicious application named Finder.app) contains what appears to
be a blob of encrypted data near the start of the __data section (Figure 9-1).

Figure 9-1: Embedded obfuscated data (NetWire)

192 Chapter 9

A continued triage of the malware’s main function reveals multiple calls to
a function at 0x00009502. Each call to this function passes in an address that falls
within the block of encrypted data, which starts around 0x0000e2f0 in memory:

0x00007364 push esi
0x00007365 push 0xe555
0x0000736b call sub_9502
...
0x00007380 push 0xe5d6
0x00007385 push eax
0x00007386 call sub_9502
...
0x000073fd push 0xe6b6
0x00007402 push edi
0x00007403 call sub_9502

It seems reasonable to assume that this function is responsible for
decrypting the contents of the blob of encrypted data. As noted previously,
you can usually set a breakpoint after code that references the encrypted
data and then dump the decrypted data. In the case of NetWire, we can set
a breakpoint immediately after the !nal call to the decryption function,
and then we can examine the decrypted data in memory. As it decrypts to
a sequence of printable strings, we can display it via the x/s debugger com-
mand, as in Listing 9-6:

% lldb Finder.app

(lldb) process launch --stop-at-entry
(lldb) b 0x00007408
Breakpoint 1: where = Finder`Finder[0x00007408], address = 0x00007408

(lldb) c
Process 1130 resuming
Process 1130 stopped * thread #1, queue = 'com.apple.main-thread', stop reason
= breakpoint 1.1

(lldb) x/20s 0x0000e2f0
1 0x0000e2f8: "89.34.111.113:443;"
0x0000e4f8: "Password"
0x0000e52a: "HostId-%Rand%"
0x0000e53b: "Default Group"
0x0000e549: "NC"
0x0000e54c: "-"
2 0x0000e555: "%home%/.defaults/Finder"
0x0000e5d6: "com.mac.host"
0x0000e607: "{0Q44F73L-1XD5-6N1H-53K4-I28DQ30QB8Q1}"
...

Listing 9-6: Dumping now-decrypted configuration parameters (NetWire)

The contents turn out to be con!guration parameters that include
the address of the malware’s command and control server 1, as well as its
installation path 2. Recovering these con!guration parameters greatly
expedites our analysis.

Anti-Analysis 193

Finding the Deobfuscation Code
When we encounter obfuscated or encrypted data in a malicious sample, it’s
important to locate the code that deobfuscates or decrypts this data. Once
we’ve done so, we can set a debugging breakpoint and recover the plaintext.
This raises the question of how we can locate that code within the malware.

Usually, the best approach is to use a disassembler or decompiler to
identify code that references the encrypted data. These references gener-
ally indicate either the code responsible for decryption or code that later
references the data in a decrypted state.

For example, in the case of WindTail, we noted various strings that
appeared to be obfuscated. If we select one such string ("BouCfWujdfbAUfCos/
iIOg=="), we !nd it is referenced in the following disassembly (Listing 9-7):

0x000000010000239f mov rsi, @selector(yoop:)
0x00000001000023a6 lea rdx, @"BouCfWujdfbAUfCos/iIOg=="
0x00000001000023ad mov r15, qword [_objc_msgSend]
0x00000001000023b4 call r15

Listing 9-7: Possible string deobfuscation (WindTail)

Recall that the objc_msgSend function is used to invoke Objective-C
methods, that the RSI register will hold the name of the method being
invoked, and that the RDI register will hold its !rst parameter. From the dis-
assembly that references the obfuscated string, we can see that the malware
is invoking the yoop: method with the obfuscated string as its parameter.
Enumerating cross-references to the yoop: selector (found at 0x100015448)
reveals that the method is invoked once for each string that needs to be
decoded and decrypted (Figure 9-2).

Figure 9-2: Cross-references to @selector(yoop:) (WindTail)

Taking a closer look at the actual yoop: method reveals calls to methods
named decode: and AESDecryptWithPassphrase:, con!rming it is indeed a decod-
ing and decryption routine (Listing 9-8).

194 Chapter 9

-(void *)yoop:(void *)string {

 rax = [[[NSString alloc] initWithData:[[yu decode:string]
 AESDecryptWithPassphrase:key] encoding:0x1]
 stringByTrimmingCharactersInSet:[NSCharacterSet whitespaceCharacterSet]];

 return rax;
}

Listing 9-8: The yoop: method (WindTail)

Another approach to locating decryption routines is to peruse the disas-
sembly for calls into system crypto routines (like CCCrypt) and well-known
crypto constants (such as AES’s s-boxes). In certain disassemblers, third-party
plug-ins such as FindCrypt1 can automate this crypto discovery process.

String Deobfuscation via a Hopper Script
The downside to the breakpoint-based approach is that it only allows you
to recover speci!c decrypted strings. If an encrypted string is exclusively
referenced in a block of code that isn’t executed, you’ll never encounter its
decrypted value. A more comprehensive approach is to re-implement the
malware’s decryption routine and then pass in all the malware’s encrypted
strings to recover their plaintext values.

In Chapter 6, we introduced disassemblers, highlighting how they can be
leveraged to statically analyze compiled binaries. Such disassemblers also gen-
erally support external third-party scripts or plug-ins that can directly interact
with a binary’s disassembly. This capability is extremely useful and can extend
the functionality of a disassembler, especially in the context of overcoming
malware’s anti-static-analysis efforts. As an example of this, we’ll create a
Python-based Hopper script capable of decrypting all the embedded strings
in a sophisticated malware sample.

DoubleFantasy is the notorious Equation APT Group’s !rst-stage implant,
capable of surveying an infected host and installing a persistent second-stage
implant on systems of interest. The majority of its strings are encrypted, and
many remain encrypted even while the malware is executed unless certain
prerequisites, such as speci!c tasking, are met. However, as the embedded
string decryption algorithm is fairly simple, we can re-implement it in a
Hopper Python script to decrypt all of the malware’s strings.

Looking at the disassembly of the DoubleFantasy malware, we can see
what appears to be an encrypted string and its length (0x38) being stored to
the stack prior to a call into an unnamed subroutine (Listing 9-9):

0x00007a93 mov dword [esp+0x8], 0x38
0x00007a9b lea eax, dword [ebx+0x105a7] ;"\xDA\xB3\...\x14"
0x00007aa1 mov dword [esp+0x4], eax
0x00007aa5 call sub_d900

Listing 9-9: An encrypted string, and a call to a possible string-decryption function
(DoubleFantasy)

Anti-Analysis 195

An examination of this subroutine reveals it decrypts a passed-in string
by running it through a simple XOR algorithm. As shown in the following
snippet of disassembly (Listing 9-10), the algorithm uses two keys:

0x0000d908 mov eax, dword [ebp+arg_4]
1 0x0000d90b movzx edi, byte [eax]
...
0x0000d930 movzx edx, byte [esi]
0x0000d933 inc esi
0x0000d934 mov byte [ebp+var_D], dl
0x0000d937 mov eax, edx
0x0000d939 mov edx, dword [ebp+arg_0]
0x0000d93c xor eax, edi 1
0x0000d93e xor eax, ecx
2 0x0000d940 xor eax, 0x47
0x0000d943 mov byte [edx+ecx-1], al
0x0000d947 movzx eax, byte [ebp+var_D]
0x0000d94b inc ecx
0x0000d94c add edi, eax
0x0000d94e cmp ecx, dword [ebp+var_C]
0x0000d951 jne loc_d930

Listing 9-10: A simple string-decryption algorithm (DoubleFantasy)

The !rst key is based on the values of the encrypted string itself 1,
while the second is hardcoded to 0x47 2. With this understanding of the
malware’s string decryption algorithm, we can trivially re-implement it in
Python (Listing 9-11):

def decrypt(encryptedStr):
 ...
 1 key_1 = encryptedStr[0]
 key_2 = 0x47

 for i in range(1, len(encryptedStr)):
 2 byte = (encryptedStr[i] ^ key_1 ^ i ^ key_2) & 0xFF
 decryptedStr.append(chr(byte))

 key_1 = encryptedStr[i] + key_1

 3 return ''.join(decryptedStr)

Listing 9-11: A re-implementation of DoubleFantasy’s string decryption algorithm in Python

In our Python re-implementation of the malware’s decryption routine,
we !rst initialize both XOR keys 1. Then we simply iterate over each byte
of the encrypted string, de-XORing each with both keys 2. The decrypted
string is then returned 3.

With the malware’s decryption algorithm re-implemented, we now need
to invoke it on all of the malware’s embedded encrypted strings. Luckily,
Hopper makes this fairly straightforward. DoubleFantasy’s encrypted strings
are all stored in its _cstring segment. Using the Hopper APIs made available
to any Hopper script, we programmatically iterate through this segment,

196 Chapter 9

invoking the re-implemented decryption algorithm on each string. We add
the logic in Listing 9-12 to our Python code to accomplish this.

#from start to end of cString segment
#extract/decrypt all strings
i = cSectionStart
while i < cSectionEnd:

 #skip if item is just a 0x0
 if 0 == cSegment.readByte(i):
 i += 1
 continue

 stringStart = i
 encryptedString = []
 while (0 != cSegment.readByte(i)): 1
 encryptedString.append(cSegment.readByte(i))
 i += 1

 decryptedString = decryptStr(encryptedString) 2
 if decryptedString.isascii(): 3

 print(decryptedString)

 #add as inline comment and to all references 4
 doc.getCurrentSegment().setInlineCommentAtAddress(stringStart, decryptedString)

 for reference in cSegment.getReferencesOfAddress(stringStart):
 doc.getCurrentSegment().setInlineCommentAtAddress(reference, decryptedString)

Listing 9-12: Leveraging the Hopper API to decrypt embedded strings (DoubleFantasy)

In this listing, we iterate through the _cstring segment and !nd any
null-terminated items, which includes the malware’s embedded encrypted
strings 1. For each of these items, we invoke our decryption function on
it 2. Finally, we check if the item decrypted to a printable ASCII string 3.
This check ensures we ignore other items found within the _cstring seg-
ment that are not encrypted strings. The decrypted string is then added as
an inline comment directly into the disassembly, both at the location of the
encrypted string and at any location where it is referenced in code to facili-
tate continuing analysis 4.

After executing our decryption script in Hopper’s Script menu, the
strings are decrypted and the disassembly is annotated. For example, as you
can see in Listing 9-13, the string "\xDA\xB3\...\x14" decrypts to /Library/
Caches/com.apple.LaunchServices-02300.csstore, which turns out to be the hard-
coded path of the malware’s con!guration !le.

0x00007a93 mov dword [esp+0x8], 0x38
0x00007a9b lea eax, dword [ebx+0x105a7] ; "/Library/Caches/com.apple.LaunchServices
 -02300.csstore, \xDA\xB3\...\x14"
0x00007aa1 mov dword [esp+0x4], eax
0x00007aa5 call sub_d900

Listing 9-13: Disassembly, now annotated with the decrypted string (DoubleFantasy)

Anti-Analysis 197

Forcing the Malware to Execute Its Decryption Routine
Creating disassembly scripts to facilitate analysis is a powerful approach.
However, in the context of string decryptions, it requires that you both fully
understand the decryption algorithm and are capable of re-implementing
it. This can often be a time-consuming endeavor. In this section we’ll look
at a potentially more ef!cient approach, especially for samples that imple-
ment complex decryption algorithms.

A malware specimen is almost certainly designed to decrypt all its
strings; we just need a way to convince the malware to do so. Turns out this
isn’t too hard. In fact, if we create a dynamic library and inject it into the
malware, this library can then directly invoke the malware’s string decryp-
tion routine for all encrypted strings, all without having to understand the
internals of the decryption algorithm. Let’s walk through this process using
the EvilQuest malware as our target.

First, we note that EvilQuest’s binary, named patch, appears to con-
tain many obfuscated strings (Listing 9-14):

% strings - EvilQuest/patch
Host: %s
ERROR: %s
1PnYz01rdaiC0000013
1MNsh21anlz906WugB2zwfjn0000083
2Uy5DI3hMp7o0cq|T|14vHRz0000013
3mTqdG3tFoV51KYxgy38orxy0000083
0JVurl1WtxB53WxvoP18ouUM2Qo51c3v5dDi0000083
2WVZmB2oRkhr1Y7s1D2asm{v1Al5AT33Xn3X0000053
3iHMvK0RFo0r3KGWvD28URSu06OhV61tdk0t22nizO3nao1q0000033
...

Listing 9-14: Obfuscated strings (EvilQuest)

Statically analyzing EvilQuest for a function that takes the obfuscated
strings as input quickly reveals the malware’s deobfuscation (decryption)
logic, found in a function named ei_str (Listing 9-15):

lea rdi, "0hC|h71FgtPJ32afft3EzOyU3xFA7q0{LBxN3vZ"...
call ei_str
...
lea rdi, "0hC|h71FgtPJ19|69c0m4GZL1xMqqS3kmZbz3FW"...
call ei_str

Listing 9-15: Invocation of a deobfuscation function, ei_str (EvilQuest)

The ei_str function is rather long and complicated, so instead of try-
ing to decrypt the strings solely via a static analysis approach, we’ll opt for a
dynamic approach. Moreover, as many of the strings are only deobfuscated
at runtime under certain circumstances, such as when a speci!c command
is received, we’ll inject a custom library into the code instead of leveraging
a debugger.

198 Chapter 9

Our custom injectable library will perform two tasks. First, within a
running instance of the malware, it will resolve the address of the deob-
fuscation function, ei_str. Then it will invoke the ei_str function for all
encrypted strings found embedded within the malware’s binary. Because
we place this logic in the constructor of the dynamic library, it will be
executed when the library is loaded, well before the malware’s own code
is run.

Listing 9-16 shows the code we’ll write for the constructor of the inject-
able dynamic decryptor library:

//library constructor
//1. resolves address of malware's `ei_str` function
//2. invokes it for all embedded encrypted strings
__attribute__((constructor)) static void decrypt() {

 //define & resolve the malware's ei_str function
 typedef char* (*ei_str)(char* str);
 ei_str ei_strFP = dlsym(RTLD_MAIN_ONLY, "ei_str");

 //init pointers
 //the __cstring segment starts 0xF98D after ei_str and is 0x29E9 long
 char* start = (char*)ei_strFP + 0xF98D;
 char* end = start + 0x29E9;
 char* current = start;

 //decrypt all strings
 while(current < end) {

 //decrypt and print out
 char* string = ei_strFP(current);
 printf("decrypted string (%#lx): %s\n", (unsigned long)current, string);

 //skip to next string
 current += strlen(current);
 }

 //bye!
 exit(0);
}

Listing 9-16: Our dynamic string deobfuscator library (EvilQuest)

The library code scans over the malware’s entire __cstring segment,
which contains all the obfuscated strings. For each string, it invokes the
malware’s own ei_str function to deobfuscate the string. Once it’s compiled
(% clang decryptor.m -dynamiclib -framework Foundation -o decryptor.dylib), we
can coerce the malware to load our decryptor library via the DYLD_INSERT_
LIBRARIES environment variable. In the terminal of a virtual machine, we
can execute the following command:

% DYLD_INSERT_LIBRARIES=<path to dylib> <path to EvilQuest>

Anti-Analysis 199

Once loaded, the library’s code is automatically invoked and coerces
the malware to decrypt all its strings (Listing 9-17):

% DYLD_INSERT_LIBRARIES=/tmp/decryptor.dylib EvilQuest/patch

decrypted string (0x10eb675ec): andrewka6.pythonanywhere.com

decrypted string (0x10eb67a95): *id_rsa*/i
decrypted string (0x10eb67c15): *key*.png/i
decrypted string (0x10eb67c35): *wallet*.png/i
decrypted string (0x10eb67c55): *key*.jpg/i

decrypted string (0x10eb67d12): [Memory Based Bundle]
decrypted string (0x10eb67d6b): ei_run_memory_hrd

decrypted string (0x10eb681ad):
<!DOCTYPE plist PUBLIC "-//Apple//DTD PLIST 1.0//EN" "http://www.apple.com/
DTDs/PropertyList-1.0.dtd">
<plist version="1.0">
<dict>
<key>Label</key>
<string>%s</string>

<key>ProgramArguments</key>
<array>

Listing 9-17: Deobfuscated strings (EvilQuest)

The decrypted output (abridged) reveals informative strings that
appear to show a potential command and control server, !les of interest,
and a template for launch item persistence.

If the malware is compiled with a hardened runtime, the dynamic
loader will ignore the DYLD_INSERT_LIBRARIES variable and fail to load our
deobfuscator. To bypass this protection, you can !rst disable System
Integrity Protection (SIP) and then execute the following command to set
the amfi_get_out_of_my_way boot argument and then reboot your analysis sys-
tem (or virtual machine):

nvram boot-args="amfi_get_out_of_my_way=0x1"

For more information on this topic, see “How to Inject Code into
Mach-O Apps, Part II.”2

Code-Level Obfuscations
To further protect their creations from analysis, malware authors may also
turn toward broader code-level obfuscations. For malicious scripts, which
are otherwise easy to analyze, as they are not compiled into binary code,
this sort of obfuscation is quite common. As we discussed in Chapter 4, we
can often leverage tools such as beauti!ers to improve the readability of
obfuscated scripts. Obfuscated Mach-O binaries are somewhat less com-
mon, but we’ll look at several examples of this technique.

200 Chapter 9

One such obfuscation method involves adding spurious, or garbage,
instructions at compile time. These instructions are essentially non-
operations (NOPs) and have no impact on the core functionality of the
malware. However, when spread effectively throughout the binary, they can
mask the malware’s real instructions. The proli!c Pirrit malware provides
an example of such binary obfuscation. To hinder static analysis and hide
other logic aimed at preventing dynamic analysis, its authors added large
amounts of garbage instructions. In the case of Pirrit, these instructions
make up either calls into system APIs (whose results are ignored), bogus
control #ow blocks, or inconsequential modi!cations to unused memory.
The following is an example of the former, in which we see the dlsym API
being invoked. This API is normally invoked to dynamically resolve the
address of a function by name. In Listing 9-18, the decompiler has deter-
mined the results are unused:

dlsym(dlopen(0x0, 0xa), 0x100058a91);
dlsym(dlopen(0x0, 0xa), 0x100058a80);
dlsym(dlopen(0x0, 0xa), 0x100058a64);
dlsym(dlopen(0x0, 0xa), 0x100058a50);
dlsym(dlopen(0x0, 0xa), 0x100058a30);
dlsym(dlopen(0x0, 0xa), 0x100058a10);
dlsym(dlopen(0x0, 0xa), 0x1000589f0);

Listing 9-18: Spurious function calls (Pirrit)

Elsewhere in Pirrit’s decompilation, we !nd spurious code control
blocks whose logic is not relevant to the core functionality of the malware.
Take, for instance, Listing 9-19, which contains several pointless compari-
sons of the RAX register. (The !nal check can only evaluate to true if RAX
is equal to 0x6b1464f0, so the !rst two checks are entirely unnecessary.)
Following this is a large sequence of instructions that modify a section of
the binary’s memory, which is otherwise unused:

if (rax != 0x6956b086) {
 if (rax != 0x6ad066c0) {
 if (rax == 0x6b1464f0) {
 *(int8_t *)byte_1000589fa = var_29 ^ 0x37;
 *(int8_t *)byte_1000589fb = *(int8_t *)byte_1000589fb ^ 0x9a;
 *(int8_t *)byte_1000589fc = *(int8_t *)byte_1000589fc ^ 0xc8;
 *(int8_t *)byte_1000589fd = *(int8_t *)byte_1000589fd ^ 0xb2;
 *(int8_t *)byte_1000589fe = *(int8_t *)byte_1000589fe ^ 0x15;
 *(int8_t *)byte_1000589ff = *(int8_t *)byte_1000589ff ^ 0x78;
 *(int8_t *)byte_100058a00 = *(int8_t *)byte_100058a00 ^ 0x1d;
 ...
 *(int8_t *)byte_100058a20 = *(int8_t *)byte_100058a20 ^ 0x69;
 *(int8_t *)byte_100058a21 = *(int8_t *)byte_100058a21 ^ 0xab;
 *(int8_t *)byte_100058a22 = *(int8_t *)byte_100058a22 ^ 0x02;
 *(int8_t *)byte_100058a23 = *(int8_t *)byte_100058a23 ^ 0x46;

Listing 9-19: Spurious instructions (Pirrit)

Anti-Analysis 201

In almost every subroutine in Pirrit’s disassembly, we !nd massive
amounts of such garbage instructions. Though they do slow down our analy-
sis and initially mask the malware’s true logic, once we understand their
purpose, we can simply ignore them and scroll past. For more information
on this and other similar obfuscation schemes, you can read “Using LLVM to
Obfuscate Your Code During Compilation.”3

Bypassing Packed Binary Code
Another common way to obfuscate binary code is with a packer. In a nut-
shell, a packer compresses binary code to prevent its static analysis while
also inserting a small unpacker stub at the entry point of the binary. As
the unpacker stub is automatically executed when the packed program
is launched, the original code is restored in memory and then executed,
retaining the binary’s original functionality.

Packers are payload-agnostic and thus can generally pack any binary.
This means that legitimate software can also be packed, as software devel-
opers occasionally seek to thwart analysis of their proprietary code. Thus,
we can’t assume any packed binary is malicious without further analysis.

The well-known UPX packer is a favorite among both Windows and
macOS malware authors.4 Luckily, unpacking UPX-packed !les is easy. You
can simply execute UPX with the -d command line #ag (Listing 9-20). If
you’d like to write the unpacked binary to a new !le, use the -o #ag as well.

% upx -d ColdRoot.app/Contents/MacOS/com.apple.audio.driver

 Ultimate Packer for eXecutables
 Copyright (C) 1996 - 2013

 With LZMA support, Compiled by Mounir IDRASSI (mounir@idrix.fr)

 File size Ratio Format Name
 -------------------- ------ ----------- ----------------------
 3292828 <- 983040 29.85% Mach/i386 com.apple.audio.driver

 Unpacked 1 file.

Listing 9-20: Unpacking via UPX (ColdRoot)

As you can see, we’ve unpacked a UPX-packed variant: the malware
known as ColdRoot. Once it’s unpacked and decompressed, we can com-
mence static and dynamic analysis.

Here is a valid question: How did we know the sample was packed? And
how did we know it was packed with UPX speci!cally? One semiformal
approach to !guring out which binaries are packed is to calculate the
entropy (amount of randomness) of the binary to detect the packed seg-
ments, which will have a much higher level of randomness than normal
binary instructions. I’ve added code to the Objective-See TaskExplorer
utility to generically detect packed binaries in this manner.5

202 Chapter 9

A less formal approach is to leverage the strings command or load the
binary in your disassembler of choice and peruse the code. With experi-
ence, you’ll be able to infer that a binary is packed if you observe the
following:

• Unusual section names
• A majority of strings obfuscated
• Large chunks of executable code that cannot be disassembled
• A low number of imports (references to external APIs)

Unusual section names are an especially good indicator, as they can
also help identify the packer used to compress the binary. For example,
UPX adds a section named __XHDR, which you can see in the output of the
strings command or in a Mach-O viewer (Figure 9-3).

Figure 9-3: UPX section header (ColdRoot)

It is worth noting that UPX is an exception among packers in the sense
that it can unpack any UPX-packed binary. More sophisticated malware
may leverage custom packers, which may mean that you have no unpacking
utility available. Not to worry: if you encounter a packed binary and have
no utility to unpack it, a debugger may be your best bet. The idea is simple:
run the packed sample under the watchful eye of a debugger, and once the
unpacker stub has executed, dump the unprotected binary from memory
with the memory read LLDB command.

For another thorough discussion of both analyzing other pack-
ers (such as MPRESS) and the process of dumping a packed binary
from memory, see Pedro Vilaça’s informative 2014 talk, “F*ck You
HackingTeam.”6

Decrypting Encrypted Binaries
Similar to packers are binary encryptors, which encrypt the original mal-
ware code at the binary level. To automatically decrypt the malware at
runtime, the encryptor will often insert a decryptor stub and keying
information at the start of the binary unless the operating system natively

Anti-Analysis 203

supports encrypted binaries, which macOS does. As noted, the infa-
mous HackingTeam is fond of packers and encryptors. In the blog post
“HackingTeam Reborn . . .” I noted that the installer for the HackingTeam’s
macOS implant, RCS, leveraged Apple’s proprietary and undocumented
Mach-O encryption scheme in an attempt to thwart static analysis.7

Let’s take a closer look at how to decrypt binaries, such as Hacking-
Team’s installer, that have been protected via this method. In macOS’s
open source Mach-O loader, we !nd an LC_SEGMENT #ag value named
SG_PROTECTED_VERSION_1 whose value is 0x8:8

#define SG_PROTECTED_VERSION_1 0x8 /* This segment is protected. If the
 segment starts at file offset 0, the
 first page of the segment is not
 protected. All other pages of the
 segment are protected. */

Comments show that this #ag speci!es that a Mach-O segment is
encrypted (or “protected,” in Apple parlance). Via otool, we can parse the
embedded Mach-O loader commands in HackingTeam’s installer and
note that, indeed, the #ag’s value within the __TEXT segment (the segment
that contains the binary’s executable instructions) is set to the value of
SG_PROTECTED_VERSION_1 (Listing 9-21):

% otool -l HackingTeam/installer
...

Load command 1
 cmd LC_SEGMENT
 cmdsize 328
 segname __TEXT
 vmaddr 0x00001000
 vmsize 0x00004000
 fileoff 0
 filesize 16384
 maxprot 0x00000007
 initprot 0x00000005
 nsects 4
 flags 0x8

Listing 9-21: An encrypted installer; note that the flags field is set to 0x8, SG_PROTECTED
_VERSION_1 (HackingTeam)

From the macOS loader’s source code, we can see that the load_segment
function checks the value of this #ag.9 If the #ag is set, the loader will
invoke a function named unprotect_dsmos_segment to decrypt the segment, as
in Listing 9-22:

static load_return_t load_segment(...)
{
 ...

 if (scp->flags & SG_PROTECTED_VERSION_1) {
 ret = unprotect_dsmos_segment(file_start,

204 Chapter 9

 file_end - file_start,
 vp,
 pager_offset,
 map,
 vm_start,
 vm_end - vm_start);
 if (ret != LOAD_SUCCESS) {
 return ret;
 }
 }

Listing 9-22: macOS’s support of encrypted Mach-O binaries

Continued analysis reveals that the encryption scheme is symmetric
(either Blow!sh or AES) and uses a static key that is stored within the Mac’s
System Management Controller. As such, we can write a utility to decrypt
any binary protected in this manner. For more discussion of this macOS
encryption scheme, see Erik Pistelli’s blog post “Creating undetected mal-
ware for OS X.”10

Another option for recovering the malware’s unencrypted instructions
is to dump the unprotected binary code from memory once the decryption
code has executed. For this speci!c malware specimen, its unencrypted code
can be found from address 0x7000 to 0xbffff. The following debugger com-
mand will save its unencrypted code to disk for static analysis:

(lldb) memory read --binary --outfile /tmp/dumped.bin 0x7000 0xbffff --force

Note that due to the large memory range, the --force #ag must be
speci!ed as well.

I’ve shown that dynamic analysis environments and tools are generally
quite successful against anti-static-analysis approaches. As a result, malware
authors also seek to detect and thwart dynamic analysis.

Anti-Dynamic-Analysis Approaches
Malware authors are well aware that analysts often turn to dynamic analy-
sis as an effective means to bypass anti-analysis logic. Thus, malware often
contains code that attempts to detect whether it is executing in a dynamic
analysis environment like a virtual machine or within a dynamic analysis
tool like a debugger.

Malware may leverage several common approaches to detecting dynamic
analysis environments and tools:

• Virtual machine detection: Often, malware analysts will execute the
suspected malicious code within an isolated virtual machine in order to
monitor it or perform dynamic analysis. Malware, therefore, is probably
right to assume that if it !nds itself executing within a virtual machine,
it is likely being closely watched or dynamically analyzed. Thus, mal-
ware often seeks to detect if it’s running in a virtualized environment.
Generally, if it detects such an environment, it simply exits.

Anti-Analysis 205

• Analysis tool detection/prevention: Malware may query its execution
environment in an attempt to detect dynamic analysis tools, such as a
debugger. If a malware specimen detects itself running in a debugging
session, it can conclude with a high likelihood that it is being closely
analyzed by a malware analyst. In an attempt to prevent analysis, it will
likely prematurely exit. Alternatively, it might attempt to prevent debug-
ging in the !rst place.

How can we !gure out whether a malicious specimen contains anti-
analysis logic to thwart dynamic analysis? Well, if you’re attempting to
dynamically analyze a malicious sample in a virtual machine or debugger,
and the sample prematurely exits, this may be a sign that it implements
anti-analysis logic. (Of course, there are other reasons malware might exit;
for example, it might detect that its command and control server is of#ine.)

If you suspect that the malware contains such logic, the !rst goal
should be to uncover the speci!c code that is responsible for this behav-
ior. Once you’ve identi!ed it, you can bypass this code by patching it out
or simply skipping it in a debugger session. One effective way to uncover a
sample’s anti-analysis code is using static analysis, which means you have to
know what this anti-analysis logic might look like. The following sections
describe various programmatic methods that malware can leverage to detect
if it is executing within a virtual machine or a debugger. Recognizing these
approaches is important, as many are widespread and found within unrelated
Mac malware specimens.

Checking the System Model Name
Malware may check if it’s running within a virtual machine by querying the
machine’s name. The macOS ransomware named MacRansom performs
such a check. Take a look at the following snippet of decompiled code,
which corresponds to the malware’s anti-virtual-machine check. Here,
after decoding a command, the malware invokes the system API to execute
it. If the API returns a nonzero value, the malware will prematurely exit
(Listing 9-23):

rax = decodeString(&encodedString);
if (system(rax) != 0x0) goto leave;

leave:
 rax = exit(0xffffffffffffffff);
 return rax;
}

Listing 9-23: Obfuscated anti-VM logic (MacRansom)

To uncover the command executed by the malware, we can leverage a
debugger. Speci!cally, by setting a breakpoint on the system API function,
we can dump the decoded command. As it is passed as an argument to

206 Chapter 9

system, as shown in the debugger output in Listing 9-24, this command can
be found in the RDI register:

(lldb) b system
Breakpoint 1: where = libsystem_c.dylib`system, address = 0x00007fff67848fdd
(lldb) c

Process 1253 stopped
* thread #1, queue = 'com.apple.main-thread', stop reason = breakpoint 1.1
 frame #0: 0x00007fff67848fdd libsystem_c.dylib`system
libsystem_c.dylib`system:
-> 0x7fff67848fdd <+0>: pushq %rbp

(lldb) x/s $rdi
0x100205350: "sysctl hw.model|grep Mac > /dev/null" 1

Listing 9-24: Deobfuscated anti-VM command (MacRansom)

Turns out the command 1 !rst retrieves the system’s model name
from hw.model and then checks to see if it contains the string Mac. In a virtual
machine, this command will return a nonzero value, as the value for hw.model
will not contain Mac but rather something similar to VMware7,1 (Listing 9-25):

% sysctl hw.model
hw.model: VMware7,1

Listing 9-25: System’s hardware model (in a virtual machine)

On native hardware (outside of a virtual machine), the sysctl hw.model
command will return a string containing Mac and the malware will not exit
(Listing 9-26):

% sysctl hw.model
hw.model: MacBookAir7,2

Listing 9-26: System’s hardware model (on native hardware)

Counting the System’s Logical and Physical CPUs
MacRansom contains another check to see if it is running in a virtual
machine. Again, the malware decodes a command, executes it via the system
API, and prematurely exits if the return value is nonzero. Here is the com-
mand it executes:

echo $((`sysctl -n hw.logicalcpu`/`sysctl -n hw.physicalcpu`))|grep 2 > /dev/null

This command checks the number of logical CPUs divided by the num-
ber of physical CPUs on the system where the malware is executing. On a
virtual machine, this value is often just 1. If it isn’t 2, the malware will exit.
On native hardware, dividing the number of logical CPUs by the number
of physical CPUs will often (but not always!) result in a value of 2, in which
case the malware will happily continue executing.

Anti-Analysis 207

Checking the System’s MAC Address
Another Mac malware sample that contains code to detect if it is run-
ning in a virtual machine is Mughthesec, which masquerades as an Adobe
Flash installer. If it detects that it is running within a virtual machine, the
installer doesn’t do anything malicious; it merely installs a legitimate copy
of Flash. Security researcher Thomas Reed noted that this virtual machine
detection is done by examining the system’s MAC address.

If we disassemble the malicious installer, we !nd the snippet of code
responsible for retrieving the system’s MAC address via the I/O registry
(Listing 9-27):

1 r14 = IOServiceMatching("IOEthernetInterface");
if (r14 != 0x0) {
 rbx = CFDictionaryCreateMutable(...);
 if (rbx != 0x0) {
 CFDictionarySetValue(rbx, @"IOPrimaryInterface", **_kCFBooleanTrue);
 CFDictionarySetValue(r14, @"IOPropertyMatch", rbx);
 CFRelease(rbx);
 }
}
...
rdx = &var_5C0;
if (IOServiceGetMatchingServices(r15, r14, rdx) == 0x0) {
 ...
 r12 = var_5C0;
 rbx = IOIteratorNext(r12);
 r14 = IORegistryEntryGetParentEntry(rbx, "IOService", rdx);
 if (r14 == 0x0) {
 rdx = **_kCFAllocatorDefault;
 2 r15 = IORegistryEntryCreateCFProperty(var_35C, @"IOMACAddress", rdx, 0x0);

Listing 9-27: Retrieving the primary MAC address (Mughthesec)

The malware !rst creates an iterator containing the primary Ethernet
interface by invoking APIs such as IOServiceMatching with the string
"IOEthernetInterface" 1. Using this iterator, it then retrieves the MAC address 2.
Note that this code is rather similar to Apple’s “GetPrimaryMACAddress”
sample code, which demonstrates how to programmatically retrieve the
device’s primary MAC address.11 This is not surprising, as malware authors
often consult (or even copy and paste) Apple’s sample code.

MAC addresses contain an organizationally unique identi"er (OUI) that
maps to a speci!c vendor. If malware detects a MAC address with an OUI
matching a virtual machine vendor such as VMware, it knows it is running
within a virtual machine. Vendors’ OUIs can be found online, such as on
company websites. For example, online documentation found at https://docs
.vmware.com/ notes that VMware’s OUI ranges include 00:50:56 and 00:0C:29,
meaning that for the former, VMware VMs will contain MAC addresses in
the following format: 00:50:56:XX:YY:ZZ.12

Of course, there are a myriad of other ways for malware to program-
matically detect if it is executing within a virtual machine. For a fairly com-
prehensive list of such methods, see “Evasions: macOS.”13

https://docs.vmware.com/
https://docs.vmware.com/

208 Chapter 9

Checking System Integrity Protection Status
Of course, not all analysis is done within virtual machines. Many malware ana-
lysts leverage dedicated analysis machines to dynamically analyze malicious
code. In this scenario, as the analysis is performed on native hardware, anti-
analysis logic that is based on detecting virtual machines is useless. Instead,
malware must look for other indicators to determine if it’s running within
an analysis environment. One such approach is to check the status of System
Integrity Protection (SIP).

SIP is a built-in macOS protection mechanism that, among other
things, may prevent the debugging of processes. Malware analysts, who
often require the ability to debug any and all processes, will often disable
SIP on their analysis machines. The proli!c Pirrit malware leverages this
fact to check whether it’s likely running on an analysis system. Speci!cally, it
will execute macOS’s csrutil command to determine the status of SIP. We can
observe this passively via a process monitor, or more directly in a debugger.
In the case of the latter, we can break on a call to the NSConcreteTask’s launch
method and dump the launch path and arguments of the task object (found
in the RDI register), as shown in Listing 9-28:

(lldb) po [$rdi launchPath]
/bin/sh

(lldb) po [$rdi arguments]
<__NSArrayI 0x10580dfd0>(
 -c,
 command -v csrutil > /dev/null && csrutil status |
 grep -v "enabled" > /dev/null && echo 1 || echo 0
)

Listing 9-28: Retrieving the System Integrity Protection status (Pirrit)

From the debugger output, we can con!rm that indeed the malware is
executing the csrutil command (via the shell, /bin/sh) with the status #ag.
The output of this command is passed to grep to check if SIP is still enabled.
If SIP has been disabled, the malware will prematurely exit in an attempt to
prevent continued dynamic analysis.

Detecting or Killing Specific Tools
Malware might also contain anti-analysis code to detect and thwart dynamic
analysis tools. As you’ll see, this code usually focuses on debugger detec-
tion, but some malware specimens will also take into account other analysis
or security tools that might detect the malware and alert the user, which is
something malware often seeks to avoid at all costs.

A variant of the malware known as Proton looks for speci!c security
tools. When executed, the Proton installer will query the system to see if
any third-party !rewall products are installed. If any are found, the mal-
ware chooses not to infect the system and simply exits. This is illustrated

Anti-Analysis 209

in the following snippet of decompiled code extracted from the installer
(Listing 9-29):

1 rax = [*0x10006c4a0 objectAtIndexedSubscript:0x51];

rdx = rax;
2 if ([rbx fileExistsAtPath:rdx] != 0x0) goto fileExists;

fileExists:
rax = exit(0x0);

Listing 9-29: Basic firewall detection (Proton)

The installer !rst extracts a !lepath from a decrypted array 1. Dynamic
analysis reveals that this extracted path points to the kernel extension of Little
Snitch, a popular third-party !rewall: /Library/Extensions/LittleSnitch.kext. If
this !le is found on the system the malware is about to infect, installation is
aborted 2.

The Proton installer has other tricks up its sleeve. For example, in
an attempt to thwart dynamic analysis, it will terminate tools such as the
macOS’s log message collector (the Console application) and the popular
network monitor Wireshark. To terminate these applications, it simply
invokes the built-in macOS utility, killall. Though rather primitive and
quite noticeable, this technique will prevent the analysis tools from running
alongside the malware. (Of course, the tools can simply be restarted, or
even just renamed.)

Detecting a Debugger
The debugger is arguably the most powerful tool in the malware analyst’s
arsenal, so most malware that contains anti-analysis code seeks to detect
whether it is running in a debugger session. The most common way for a
program to determine if it is being debugged is to simply ask the system. As
described in Apple’s developer documentation, a process should !rst invoke
the sysctl API with CTL_KERN, KERN_PROC, KERN_PROC_PID, and its process identi-
!er (pid), as parameters. Also, a kinfo_proc structure should be provided.14
The sysctl function will then populate the structure with information
about the process, including a P_TRACED #ag. If set, this #ag means the pro-
cess is currently being debugged. Listing 9-30, taken directly from Apple’s
documentation, checks for the presence of a debugger in this manner:

static bool AmIBeingDebugged(void)
 // Returns true if the current process is being debugged (either
 // running under the debugger or has a debugger attached post facto).
{
 int junk;
 int mib[4];
 struct kinfo_proc info;
 size_t size;

 // Initialize the flags so that, if sysctl fails for some bizarre
 // reason, we get a predictable result.

210 Chapter 9

 info.kp_proc.p_flag = 0;

 // Initialize mib, which tells sysctl the info we want, in this case
 // we're looking for information about a specific process ID.

 mib[0] = CTL_KERN;
 mib[1] = KERN_PROC;
 mib[2] = KERN_PROC_PID;
 mib[3] = getpid();

 // Call sysctl.

 size = sizeof(info);
 junk = sysctl(mib, sizeof(mib) / sizeof(*mib), &info, &size, NULL, 0);
 assert(junk == 0);

 // We're being debugged if the P_TRACED flag is set.

 return ((info.kp_proc.p_flag & P_TRACED) != 0);
}

Listing 9-30: Debugger detection (via the P_TRACED flag)

Malware will often use this same technique, in some cases copying
Apple’s code verbatim. This was the case with the Russian malware known
as Komplex. Looking at a decompilation of Komplex’s main function, you
can see that it invokes a function named AmIBeingDebugged (Listing 9-31):

int main(int argc, char *argv[]) {
...
 if ((AmIBeingDebugged() & 0x1) == 0x0) {

 //core malicious logic

 }
 else {
 remove(argv[0]);
}

return 0;

Listing 9-31: Debugger detection (Komplex)

If the AmIBeingDebugged function returns a nonzero value, the malware
will execute the logic in the else block, which causes the malware to delete
itself in an attempt to prevent continued analysis. And as expected, if we
examine the code of the malware’s AmIBeingDebugged function, it is logically
equivalent to Apple’s debugger detection function.

Preventing Debugging with ptrace
Another anti-debugging approach is attempting to prevent debugging alto-
gether. Malware can accomplish this by invoking the ptrace system call with
the PT_DENY_ATTACH #ag. This Apple-speci!c #ag prevents a debugger from

Anti-Analysis 211

attaching and tracing the malware. Attempting to debug a process that
invokes ptrace with the PT_DENY_ATTACH #ag will fail (Listing 9-32):

% lldb proton
...

(lldb) r
Process 666 exited with status = 45 (0x0000002d)

Listing 9-32: A premature exit due to ptrace with the PT_DENY_ATTACH flag (Proton)

You can tell the malware has the PT_DENY_ATTACH #ag set because it pre-
maturely exits with a status of 45.

Calls to the ptrace function with the PT_DENY_ATTACH #ag are fairly easy
to spot (for example, by examining the binary’s imports). Thus, malware
may attempt to obfuscate the ptrace call. For example, Proton dynamically
resolves the ptrace function by name, preventing it from showing up as an
import, as you can see in the following snippet (Listing 9-33):

0x000000010001e6b8 xor edi, edi
0x000000010001e6ba mov esi, 0xa
0x000000010001e6bf call 1 dlopen
0x000000010001e6c4 mov rbx, rax
0x000000010001e6c7 lea rsi, qword [ptrace]
0x000000010001e6ce mov rdi, rbx
0x000000010001e6d1 call 2 dlsym
0x000000010001e6d6 mov edi, 30x1f
0x000000010001e6db xor esi, esi
0x000000010001e6dd xor edx, edx
0x000000010001e6df xor ecx, ecx
0x000000010001e6e1 call rax

Listing 9-33: Obfuscated anti-debugger logic via ptrace, PT_DENY_ATTACH (Proton)

After invoking the dlopen function 1, the malware calls dlsym 2 to
dynamically resolve the address of the ptrace function. As the dlsym func-
tion takes a pointer to the string of the function to resolve, such as [ptrace],
that function won’t show up as a dependency of the binary. The return
value from dlsym, stored in the RAX register, is the address of ptrace. Once
the address is resolved, the malware promptly invokes it, passing in 0x1F,
which is the hexadecimal value of PT_DENY_ATTACH 3. If the malware is
being debugged, the call to ptrace will cause the debugging session to
forcefully terminate and the malware to exit.

Bypassing Anti-Dynamic-Analysis Logic
Luckily, the anti-dynamic-analysis methods covered thus far are all fairly
trivial to bypass. Overcoming most of these tactics involves two steps:
identifying the location of the anti-analysis logic and then preventing its
execution. Of these two steps, the !rst is usually the most challenging, but

212 Chapter 9

it becomes far easier once you’re familiar with the anti-analysis methods dis-
cussed in this chapter.

It’s wise to !rst statically triage a binary before diving into a full-blown
debugging session. During this triage, keep an eye out for telltale signs
that may reveal dynamic-analysis-thwarting logic. For example, if a binary
imports the ptrace API, there is a good chance it will attempt to prevent
debugging with the PT_DENY_ATTACH #ag.

Strings or function and method names may also reveal a malware’s
distaste for analysis. For example, running the nm command, used to
dump symbols, against EvilQuest reveals functions named is_debugging
and is_virtual_mchn (Listing 9-34):

% nm EvilQuest/patch
...

0000000100007aa0 T _is_debugging
0000000100007bc0 T _is_virtual_mchn

Listing 9-34: Anti-analysis functions? (EvilQuest)

Unsurprisingly, continued analysis reveals that both functions are
related to the malware’s anti-analysis logic. For example, examining the
code that invokes the is_debugging function reveals that EvilQuest will pre-
maturely exit if the function returns a nonzero value; that is, if a debugger
is detected (Listing 9-35):

0x000000010000b89a call is_debugging
0x000000010000b89f cmp eax, 0x0
0x000000010000b8a2 je continue
0x000000010000b8a8 mov edi, 0x1
0x000000010000b8ad call exit

Listing 9-35: Anti-debugging logic (EvilQuest)

However, if the malware also implements anti-static-analysis logic, such
as string or code obfuscation, locating logic that seeks to detect a virtual
machine or a debugger may be dif!cult to accomplish with static analysis
methods. In this case, you can use a methodical debugging session, starting
at the entry point of the malware (or any initialization routines). Speci!cally,
you can single-step through to the code, observing API and system calls that
may be related to the anti-analysis logic. If you step over a function and the
malware immediately exits, it’s likely that some anti-analysis logic was trig-
gered. If this occurs, simply restart the debugging session and step into the
function to examine the code more closely.

This trial and error approach could be conducted in the following
manner:

1. Start a debugger session that executes the malicious sample. It is impor-
tant to start the debugging session at the very beginning rather than
attaching it to the already running process. This ensures that the mal-
ware has not had a chance to execute any of its anti-analysis logic.

Anti-Analysis 213

2. Set breakpoints on APIs that may be invoked by the malware to detect a
virtual machine or debugging session. Examples include sysctl and ptrace.

3. Instead of allowing the malware to run uninhibited, manually step
through its code, perhaps stepping over any function calls. If any of the
breakpoints are hit, examine their arguments to ascertain if they are
being invoked for anti-analysis reasons. For example, check for ptrace
invoked with the PT_DENY_ATTACH #ag, or perhaps sysctl attempting to
retrieve the number of CPUs or setting the P_TRACED #ag. A backtrace
should reveal the address of the code within the malware that invoked
these APIs.

4. If stepping over a function call causes the malware to exit (a sign it
likely detected either the virtual machine or the debugger), restart the
debugging session and, this time, step into this function. Repeat this
process until you’ve identi!ed the location of the anti-analysis logic.

Armed with the locations of the anti-analysis logic, you can now bypass it
by modifying the execution environment, patching the on-disk binary image,
modifying program control #ow in a debugger, or modifying the register or
variable value in a debugger. Let’s brie#y look at each of these methods.

Modifying the Execution Environment
It may be possible to modify the execution environment such that the anti-
analysis logic no longer triggers. Recall that Mughthesec contains logic to
detect if it’s running within a virtual machine by examining the system’s MAC
address. If the malware detects a MAC address with an OUI matching a vir-
tual machine vendor such as VMware, it won’t execute. Luckily, we can modify
our MAC address in the virtual machine’s settings, choosing an address that
falls outside the range of any virtual machine provider’s OUI. For example,
set it to the OUI of your base macOS machine, like F0:18:98, which belongs to
Apple. Once the MAC address has been changed, Mughthesec will no longer
detect the environment as a virtual machine and so will happily execute its
malicious logic, allowing our dynamic analysis to continue.

Patching the Binary Image
Another more permanent approach to bypassing anti-analysis logic involves
patching the malware’s on-disk binary image. The Mac ransomware KeRanger
is a good candidate for this approach, as it may sleep for several days before
executing its malicious payload, perhaps in an effort to impede automated or
dynamic analysis.

Though the malware is packed, it leverages the UPX packer, which we
can fully unpack using the upx -d command. Next, static analysis can identify
the function aptly named waitOrExit that is responsible for implementing the
wait delay. It is invoked by the startEncrypt function, which begins the pro-
cess of ransoming users’ !les:

startEncrypt:
...

214 Chapter 9

0x000000010000238b call waitOrExit
0x0000000100002390 test eax, eax
0x0000000100002392 je leave

To bypass the delay logic so that the malware will immediately continue
execution, we can modify the malware’s binary code to skip the call to the
waitOrExit function.

In a hex editor, we change the bytes of the malware’s executable
instructions from a call to a nop. Short for “no operation,” a nop is an instruc-
tion (0x90 on Intel platforms) that instructs the CPU to do, well, nothing. It
is useful when patching out anti-analysis logic in malware, overwriting the
problematic instructions with benign ones. We also nop-out the instructions
that would cause the malware to terminate if the overwritten call failed
(Listing 9-36):

startEncrypt:
...
0x000000010000238b nop
0x000000010000238c nop
0x000000010000238d nop
...
0x0000000100002396 nop
0x0000000100002397 nop

Listing 9-36: Anti-analysis logic, now nop’d out (KeRanger)

Now whenever this modi!ed version of KeRanger is executed, the nop
instructions will do nothing and the malware will happily continue execut-
ing, allowing our dynamic analysis session to progress.

Though patching the malware’s on-disk binary image is a permanent
solution, it may not always be the best approach. First, if the malware
is packed with a non-UPX packer that is difficult to unpack, it may not
be possible to patch the target instructions, as they are only unpacked
or decrypted in memory. Moreover, on-disk patches involve more work
than less permanent methods, such as modi!cations to the malware’s in-
memory code during a debugging session. Finally, any modi!cation to a
binary will invalidate any of its cryptographic signatures. This could pre-
vent the malware from executing successfully. Thus, it’s more common
for malware analysts to use a debugger or other runtime method, such as
injecting a custom library, to circumvent anti-dynamic-analysis logic.

Modifying the Malware’s Instruction Pointer
One of the more powerful capabilities of a debugger is its ability to directly
modify the entire state of the malware. This capability proves especially use-
ful when you need to bypass dynamic-analysis-thwarting logic.

Perhaps the simplest way to do so involves manipulating the program’s
instruction pointer, which points to the next instruction that the CPU
will execute. This value is stored in the program counter register, which

Anti-Analysis 215

on 64-bit Intel systems is the RIP register. You can set a breakpoint on the
anti-analysis logic, and when the breakpoint is hit, modify the instruction
pointer to, for example, skip over problematic logic. If done correctly, the
malware will be none the wiser.

Let’s return to KeRanger. After setting a breakpoint on the call instruc-
tion that invokes the function that sleeps for three days, we can allow the
malware to continue until that breakpoint is hit. At this point, we can
simply modify the instruction pointer to point to the instructions after the
call. As the function call is never made, the malware never sleeps, and our
dynamic analysis session can continue.

Recall that in a debugger session, you can change the value of any regis-
ter via the reg write debugger command. To speci!cally modify the value of
the instruction pointer, execute this command on the RIP register.

(lldb) reg write $rip <new value>

Let’s walk through another example. The EvilQuest malware contains
a function named prevent_trace that invokes the ptrace API with the PT_DENY_
ATTACH #ag. Code at address 0x000000010000b8b2 invokes this function. If we
allow this function to execute during a debugging session, the system will
detect the debugger and immediately terminate the session. To bypass this
logic, we can avoid the call to prevent_trace altogether by setting a break-
point at 0x000000010000b8b2. Once the breakpoint is hit, we modify the value
of the instruction pointer to skip the call, as in Listing 9-37:

% (lldb) b 0x10000b8b2
Breakpoint 1: where = patch[0x000000010000b8b2]

(lldb) c
Process 683 resuming
Process 683 stopped
* thread #1, queue = 'com.apple.main-thread', stop reason = breakpoint 1.1

-> 0x10000b8b2: callq 0x100007c20
 0x10000b8b7: leaq 0x7de2(%rip), %rdi
 0x10000b8be: movl $0x8, %esi
 0x10000b8c3: movl %eax, -0x38(%rbp)

(lldb) reg write $rip 0x10000b8b7
(lldb) c

Listing 9-37: Skipping anti-debugger logic (EvilQuest)

Now the prevent_trace function is never invoked, and our debugging
session can continue.

Note that manipulating the instruction pointer of a program can have
serious side effects if not done correctly. For example, if a manipulation causes
an unbalanced or misaligned stack, that program may crash. Sometimes, a
simpler approach can be taken to avoid manipulating the instruction pointer
and modify other registers instead.

216 Chapter 9

Modifying a Register Value
Note that EvilQuest contains a function named is_debugging. Recall that
the function returns a nonzero value if it detects a debugging session,
which will cause the malware to abruptly terminate. Of course, if no
debugging session is detected because is_debugging returns zero, the mal-
ware will happily continue.

Instead of manipulating the instruction pointer, we can set a break-
point on the instruction that performs the check of the value returned by
the is_debugging function. Once this breakpoint is hit, the EAX register will
contain a nonzero value, as the malware will have detected our debugger.
However, via the debugger, we can surreptitiously toggle the value in EAX to 0
(Listing 9-38):

* thread #1, queue = 'com.apple.main-thread', stop reason = breakpoint 1.1
-> 0x10000b89f: cmpl $0x0, %eax
 0x10000b8a2: je 0x10000b8b2
 0x10000b8a8: movl $0x1, %edi
 0x10000b8ad: callq exit

(lldb) reg read $eax
 rax = 0x00000001

(lldb) reg write $eax 0

Listing 9-38: Modifying register values to bypass anti-debugging logic

Changing the value of the EAX register to 0 (via reg write $eax 0) ensures
the comparison instruction will now result in the zero #ag being set. Thus,
the je instruction will take the branch to address 0x10000b8b2, avoiding the
call to exit at 0x10000b8ad. Note that we only needed to modify the lower
32 bits of the RAX register (EAX), as this is all that is checked by the compare
instruction (cmp).

A Remaining Challenge: Environmentally Generated Keys
At this point, it may seem that malware analysts have the upper hand; after
all, no anti-analysis measures can stop us, right? Not so fast. Sophisticated
malware authors employ protection encryption schemes that use environ-
mentally generated keys. These keys are generated on the victim’s system and
are thus unique to a speci!c instance of an infection.

The implications of this are rather profound. If the malware !nds itself
outside the environment for which it was keyed, it will be unable to decrypt
itself. This also means that attempts to analyze the malware will likely fail,
as it will remain encrypted. If this environmental protection mechanism is
implemented correctly and the keying information is not externally recov-
erable, the only way to analyze the malware is either by performing the
analysis directly on the infected system or by performing it on a memory
dump of the malware captured on the infected system.

Anti-Analysis 217

We’ve seen this protection mechanism in Windows malware written by
the infamous Equation Group, as well as more recently on macOS by the
Lazarus Group.15 The latter encrypted all second-stage payloads with the
serial number of the infected systems. For more on the intriguing topic
of environmental key generation, see my 2015 Black Hat talk “Writing
Bad @$$ Malware for OS X.”16 Also check out James Riordan and Bruce
Schneier’s seminal paper on the topic, “Environmental Key Generation
Towards Clueless Agents.”17

Up Next
In this chapter, we discussed common anti-analysis approaches that mal-
ware may leverage in an attempt to thwart our analysis efforts. After discuss-
ing how to identify this logic, I illustrated how to use static and dynamic
approaches in order to bypass it. Armed with the knowledge presented in
this book thus far, you’re now ready to analyze a sophisticated piece of Mac
malware. In the next chapter we’ll uncover the malware’s viral infection
capabilities, persistence mechanism, and goals.

Endnotes
 1 Ilfak Guilfanov, “FindCrypt2,” Hex-Rays, February 7, 2006, https://www

.hex-rays.com/blog/"ndcrypt2/.

 2 Jon Gabilondo, “How to Inject Code into Mach-O Apps, Part II,” Jon
Gabilondo (blog), September 22, 2019, https://medium.com/@jon.gabilondo
.angulo_7635/how-to-inject-code-into-mach-o-apps-part-ii-ddb13ebc8191/.

 3 Yakov Matvienko, “Using LLVM to Obfuscate Your Code During
Compilation,” Apriorit Dev Blog, June 25, 2020, https://www.apriorit
.com/dev-blog/687-reverse-engineering-llvm-obfuscation/.

 4 UPX, https://upx.github.io/.

 5 TaskExplorer, https://objective-see.com/products/taskexplorer.html.

 6 Pedro Vilaça, “F*ck You HackingTeam,” https://papers.put.as/papers/
macosx/2014/SyScan360-FuckYouHackingTeam.pdf.

 7 Patrick Wardle, “HackingTeam Reborn: A Brief Analysis of an RCS
Implant Installer,” Objective-See, February 26, 2016, https://objective-see.com/
blog/blog_0x0D.html.

 8 “mach-o/loader.h,” Apple, https://opensource.apple.com/source/xnu/xnu
-7195.141.2/EXTERNAL_HEADERS/mach-o/loader.h.auto.html.

 9 “kern/mach_loader.c,” Apple, https://opensource.apple.com/source/xnu/xnu
-7195.141.2/bsd/kern/mach_loader.c.

 10 Erik Pistelli, “Creating undetected malware for OS X,” NTCore, October
7, 2013, https://ntcore.com/?p=436/.

https://www.hex-rays.com/blog/findcrypt2/
https://www.hex-rays.com/blog/findcrypt2/
https://medium.com/@jon.gabilondo.angulo_7635/how-to-inject-code-into-mach-o-apps-part-ii-ddb13ebc8191/
https://medium.com/@jon.gabilondo.angulo_7635/how-to-inject-code-into-mach-o-apps-part-ii-ddb13ebc8191/
https://www.apriorit.com/dev-blog/687-reverse-engineering-llvm-obfuscation/
https://www.apriorit.com/dev-blog/687-reverse-engineering-llvm-obfuscation/
https://upx.github.io/
https://objective-see.com/products/taskexplorer.html
https://papers.put.as/papers/macosx/2014/SyScan360-FuckYouHackingTeam.pdf
https://papers.put.as/papers/macosx/2014/SyScan360-FuckYouHackingTeam.pdf
https://objective-see.com/blog/blog_0x0D.html
https://objective-see.com/blog/blog_0x0D.html
https://opensource.apple.com/source/xnu/xnu-7195.141.2/EXTERNAL_HEADERS/mach-o/loader.h.auto.html
https://opensource.apple.com/source/xnu/xnu-7195.141.2/EXTERNAL_HEADERS/mach-o/loader.h.auto.html
https://opensource.apple.com/source/xnu/xnu-7195.141.2/bsd/kern/mach_loader.c
https://opensource.apple.com/source/xnu/xnu-7195.141.2/bsd/kern/mach_loader.c
https://ntcore.com/?p=436/

218 Chapter 9

 11 “GetPrimaryMACAddress,” Apple Developer Documentation Archive, https://
developer.apple.com/library/archive/samplecode/GetPrimaryMACAddress/
Introduction/Intro.html.

 12 “VMware OUI in Static MAC Addresses,” VMware, May 31, 2019, https://
docs.vmware.com/en/VMware-vSphere/7.0/com.vmware.vsphere.networking.doc/
GUID-ADFECCE5-19E7-4A81-B706-171E279ACBCD.html.

 13 “Evasions: macOS,” Check Point Research, https://evasions.checkpoint.com/
techniques/macos.html.

 14 “Technical Q&A QA1361: Detecting the Debugger,” Apple Developer
Documentation Archive, https://developer.apple.com/library/archive/qa/qa1361/
_index.html.

 15 “Equation Group: Questions and Answers,” Kaspersky Lab, February
2015, https://media.kasperskycontenthub.com/wp-content/uploads/sites/43/
2018/03/08064459/Equation_group_questions_and_answers.pdf; Patrick
Wardle, “Weaponizing a Lazarus Group Implant,” Objective-See,
February 22, 2020, https://objective-see.com/blog/blog_0x54.html.

 16 Patrick Wardle, “Writing Bad @$$ Malware for OS X,” https://www.blackhat
.com/docs/us-15/materials/us-15-Wardle-Writing-Bad-A-Malware-For-OS-X.pdf.

 17 James Riordan and Bruce Schneier, “Environmental Key Generation
Towards Clueless Agents,” Schneier on Security, https://www.schneier.com/
wp-content/uploads/2016/02/paper-clueless-agents.pdf.

https://developer.apple.com/library/archive/samplecode/GetPrimaryMACAddress/Introduction/Intro.html
https://developer.apple.com/library/archive/samplecode/GetPrimaryMACAddress/Introduction/Intro.html
https://developer.apple.com/library/archive/samplecode/GetPrimaryMACAddress/Introduction/Intro.html
https://docs.vmware.com/en/VMware-vSphere/7.0/com.vmware.vsphere.networking.doc/GUID-ADFECCE5-19E7-4A81-B706-171E279ACBCD.html
https://docs.vmware.com/en/VMware-vSphere/7.0/com.vmware.vsphere.networking.doc/GUID-ADFECCE5-19E7-4A81-B706-171E279ACBCD.html
https://docs.vmware.com/en/VMware-vSphere/7.0/com.vmware.vsphere.networking.doc/GUID-ADFECCE5-19E7-4A81-B706-171E279ACBCD.html
https://evasions.checkpoint.com/techniques/macos.html
https://evasions.checkpoint.com/techniques/macos.html
https://developer.apple.com/library/archive/qa/qa1361/_index.html
https://developer.apple.com/library/archive/qa/qa1361/_index.html
https://media.kasperskycontenthub.com/wp-content/uploads/sites/43/2018/03/08064459/Equation_group_questions_and_answers.pdf
https://media.kasperskycontenthub.com/wp-content/uploads/sites/43/2018/03/08064459/Equation_group_questions_and_answers.pdf
https://objective-see.com/blog/blog_0x54.html
https://www.blackhat.com/docs/us-15/materials/us-15-Wardle-Writing-Bad-A-Malware-For-OS-X.pdf
https://www.blackhat.com/docs/us-15/materials/us-15-Wardle-Writing-Bad-A-Malware-For-OS-X.pdf
https://www.schneier.com/wp-content/uploads/2016/02/paper-clueless-agents.pdf
https://www.schneier.com/wp-content/uploads/2016/02/paper-clueless-agents.pdf

